游戏攻略

「网络流浅谈」最大流的应用

栏目:游戏攻略 日期: 作者:游戏资讯

二分图匹配

考虑如何将二分图匹配问题,转化为流网络。设置 \(1\) 个汇点和源点,从源点向二分图一侧的每一个点连边,从另一侧向汇点连边,边权均为 \(1\) ,二分图中的边也全部加入,权值设为 \(1\) 。这样,二分图的最大匹配等于流网络的最大流。

P2756 飞行员配对方案问题

题意:给定 \(1\) 个二分图,求最大匹配。

匈牙利算法是可以求二分图最大匹配的,不过太慢了。不妨,使用上述的方式建立出流网络,并使用 Dinic 求解出该网络的最大流即可。

举个例子:左图为样例的二分图,而右图为建立的流网络。

浅析流网络最大流与二分图最大匹配的相等性:

对于网络流的题目,只需要考虑对于任意的一个最大匹配,都能对应到一个可行流;而对于任意一个可行流都能对应到一个最大匹配。

对于任意的一个最大匹配,都能对应到一个可行流:若选择边 \(E_1,E_2, \dots ,E_k\) ,则可行流中的这些边均为 \(1\) ,且令这些边左端的顶点分别为 \(V_1,V_2,\dots,V_t\) ,右端的为 \(V'_1,V'_2,\dots, V'_t\) ,则可行流的 \(s\rightarrow V_i\) 这些边均为 \(1\) \(V'_i\rightarrow t\) 这些边也均为 \(1\) 。由于匹配不存在 \(2\) 条边有公共顶点,所以一定满足容量限制与流量守恒。

对于任意的一个可行流,都能对应到一个最大匹配:可行流中流量为 \(1\) 的没有 \(s\) \(t\) 的边即为最大匹配,由于流量守恒,最多有 \(1\) 条边流向一个点,所以满足对于任意 \(2\) 条边,都不存在公共点。

故,只需要用 Dinic 跑一遍最大流即可,输出方案就是找出所有反向边流量为 \(1\) (或正向边流量为 \(0\) )的边即可。

注意:二分图下的 Dinic 算法极为特殊,时间复杂度为 \(O(n^2\sqrt n)\)

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 1e2 + 10, M = 1e5 + 10;

int n, m, s, t;
int h[N], e[M], ne[M], f[M], idx;
int d[N], cur[N];

void add(int a, int b, int c) {
	e[idx] = b, ne[idx] = h[a], f[idx] = c, h[a] = idx ++;
	e[idx] = a, ne[idx] = h[b], f[idx] = 0, h[b] = idx ++;
}
bool bfs() {
	memset(d, -1, sizeof d);
	queue<int> q;
	q.emplace(s), cur[s] = h[s], d[s] = 0;
	while (q.size()) {
		auto u = q.front();
		q.pop();

		for (int i = h[u]; ~i; i = ne[i]) {
			int j = e[i];
			if (d[j] == -1 && f[i]) {
				d[j] = d[u] + 1, cur[j] = h[j];
				if (j == t) return 1;
				q.emplace(j);
			}
		}
	}
	return 0;
}
int find(int u, int lim) {
	if (u == t) return lim;

	int flow = 0;
	for (int i = cur[u]; ~i && flow < lim; i = ne[i]) {
		int j = e[i];
		if (d[j] == d[u] + 1 && f[i]) {
			int tmp = find(j, min(lim - flow, f[i]));
			if (!tmp) d[j] = -1;
			f[i] -= tmp, f[i ^ 1] += tmp, flow += tmp;
		}
	}
	return flow;
}
int dinic() {
	int res = 0, flow;
	while (bfs()) while (flow = find(s, 1e18)) res += flow;
	return res;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	memset(h, -1, sizeof h);

	cin >> m >> n;

	s = 0, t = n + 1;
	int u, v;
	while (cin >> u >> v && u != -1) {
		add(u, v, 1);
	}
	for (int i = 1; i <= m; i ++)
		add(s, i, 1);
	for (int i = m + 1; i <= n; i ++)
		add(i, t, 1);

	cout << dinic() << endl;
	for (int i = 0; i < idx; i += 2)
		if (e[i] != t && e[i ^ 1] != s && !f[i])
			cout << e[i ^ 1] << " " << e[i] << endl;

	return 0;
}

习题

P3254 圆桌问题 ,与原建图方式有略微差异。

参考代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 5e2 + 10, M = 1e5 + 10;

int m, n, s, t;
int a[N], b[N];
int h[N], e[M], f[M], ne[M], idx;
int d[N], cur[N];

void add(int a, int b, int c) {
	e[idx] = b, ne[idx] = h[a], f[idx] = c, h[a] = idx ++;
	e[idx] = a, ne[idx] = h[b], f[idx] = 0, h[b] = idx ++;
}
bool bfs() {
	memset(d, -1, sizeof d);
	queue<int> q;
	q.emplace(s), d[s] = 0, cur[s] = h[s];
	while (q.size()) {
		int u = q.front();
		q.pop();

		for (int i = h[u]; ~i; i = ne[i]) {
			int j = e[i];
			if (d[j] == -1 && f[i]) {
				d[j] = d[u] + 1;
				cur[j] = h[j];
				if (j == t) return 1;
				q.emplace(j);
			}
		}
	}
	return 0;
}
int find(int u, int lim) {
	if (u == t) return lim;

	int flow = 0;
	for (int i = cur[u]; ~i && flow < lim; i = ne[i]) {
		cur[u] = i;
		int j = e[i];
		if (d[j] == d[u] + 1 && f[i]) {
			int tmp = find(j, min(lim - flow, f[i]));
			if (!tmp) d[j] = -1;
			f[i] -= tmp, f[i ^ 1] += tmp, flow += tmp;
		}
	}

	return flow;
}
int dinic() {
	int res = 0, flow;
	while (bfs()) while (flow = find(s, 1e18)) res += flow;
	return res;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	memset(h, -1, sizeof h);
	cin >> m >> n;

	s = 0, t = n + m + 1;
	int tot = 0;
	for (int i = 1; i <= m; i ++)
		cin >> a[i], add(s, i, a[i]), tot += a[i];
	for (int i = 1; i <= n; i ++)
		cin >> b[i], add(i + m, t, b[i]);
	for (int i = 1; i <= m; i ++)
		for (int j = m + 1; j <= n + m; j ++)
			add(i, j, 1);

	if (dinic() == tot) {
		cout << 1 << endl;
		std::vector<vector<int>> way(m + 1);
		for (int i = 0; i < idx; i += 2)
			if (e[i] != t && e[i ^ 1] != s && !f[i])
				way[e[i ^ 1]].emplace_back(e[i] - m);
		for (int i = 1; i <= m; i ++) {
			for (auto v : way[i])
				cout << v << " ";
			cout << endl;
		}
	} else {
		cout << 0 << endl;
	}

	return 0;
}

多源汇最大流

本质上只不过是源点不是 \(1\) 个,汇点也不是 \(1\) 个了,那么其实只需要再设一个超级源点连向所有源点,边权为 \(+\infty\) ,表示向这些源点可以流任意多流量,也就是说从这些源点可以流出任意多流量;同样的,从每一个汇点向超级汇点连一条 \(+\infty\) 的边,表示这些汇点可以流向超级汇点任意多流量,也就是说这些汇点都可以接纳任意多的流量。

这样的新流网络的最大流就是源网络的最大流,所以只需要对于新网络跑一遍 Dinic 即可。

习题

AcWing 2234. 多源汇最大流 ,模版题

参考代码
#include <iostream>
#include <cstring>
#include <queue>
#define int long long

using namespace std;

typedef pair<int, int> PII;

const int SIZE = 5e5 + 10;

int N, M, Sc, Tc, S, T;
int h[SIZE], e[SIZE], ne[SIZE], f[SIZE], idx;
int D[SIZE], Current[SIZE];

void add(int a, int b, int c) {
    e[idx] = b, ne[idx] = h[a], f[idx] = c, h[a] = idx ++;
    e[idx] = a, ne[idx] = h[b], f[idx] = 0, h[b] = idx ++;
}

bool BFS() {
    memset(D, -1, sizeof D);
    queue<int> Q;

    Q.push(S), D[S] = 0, Current[S] = h[S];
    while (Q.size()) {
        int u = Q.front();
        Q.pop();

        for (int i = h[u]; ~i; i = ne[i]) {
            int j = e[i];
            if (D[j] == -1 && f[i]) {
                D[j] = D[u] + 1;
                Current[j] = h[j];
                if (j == T) return true;
                Q.push(j);
            }
        }
    }

    return false;
}

int Find(int u, int limit) {
    if (u == T) return limit;

    int flow = 0;
    for (int i = Current[u]; ~i && flow < limit; i = ne[i]) {
        Current[u] = i;
        int j = e[i];
        if (D[j] == D[u] + 1 && f[i]) {
            int T = Find(j, min(f[i], limit - flow));
            if (!T) D[j] = -1;
            f[i] -= T, f[i ^ 1] += T, flow += T;
        }
    }

    return flow;
}

int Dinic() {
    int Result = 0, flow;
    while (BFS()) while (flow = Find(S, 1e18)) Result += flow;
    return Result;
}

signed main() {
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);

    memset(h, -1, sizeof h);

    cin >> N >> M >> Sc >> Tc;

    S = 0, T = N + 1;
    while (Sc --) {
        int u;
        cin >> u;
        add(S, u, 1e18);
    }

    while (Tc --) {
        int u;
        cin >> u;
        add(u, T, 1e18);
    }

    while (M --) {
        int a, b, c;

        cin >> a >> b >> c;

        add(a, b, c);
    }

    cout << Dinic() << endl;

    return 0;
}

关键边

POJ3204 Ikki's Story I - Road Reconstruction

题意:给定 \(1\) 个流网络,求有多少条边,满足增加该边边权后能使最大流增加。

考虑一条边满足什么条件使得增加容量后会使得最大流增加,回顾求最大流的过程:每一次在残留网络中找增广路径,并加到最大流中。

那么,如果容量增加后,最大流增加,那么必然是增加流量后产生 \(1\) 条增广路径。所以,对于每一条边 \((u,v)\) ,只需要判断是否存在 \(1\) 条增广路径 \(s\rightarrow u\) 以及 \(1\) 增广路径 \(v\rightarrow t\) 。判断的方法就是在最大流的残留网络中 DFS,记录每次走 \(>0\) 的边能到达那些点即可。

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 5e2 + 10, M = 2e4 + 10;

int n, m, s, t;
int h[N], e[M], ne[M], f[M], idx;
int d[N], cur[N], vis[2][N];

void add(int a, int b, int c) {
	e[idx] = b, ne[idx] = h[a], f[idx] = c, h[a] = idx ++;
	e[idx] = a, ne[idx] = h[b], f[idx] = 0, h[b] = idx ++;
}
bool bfs() {
	memset(d, -1, sizeof d);
	queue<int> q;
	q.emplace(s), d[s] = 0, cur[s] = h[s];

	while (q.size()) {
		int u = q.front();
		q.pop();

		for (int i = h[u]; ~i; i = ne[i]) {
			int j = e[i];
			if (d[j] == -1 && f[i]) {
				d[j] = d[u] + 1, cur[j] = h[j];
				if (j == t) return 1;
				q.emplace(j);
			}
		}
	}
	return 0;
}
int find(int u, int lim) {
	if (u == t) return lim;

	int flow = 0;
	for (int i = cur[u]; ~i && flow < lim; i = ne[i]) {
		cur[u] = i;
		int j = e[i];
		if (d[j] == d[u] + 1 && f[i]) {
			int tmp = find(j, min(lim - flow, f[i]));
			if (!tmp) d[j] = -1;
			f[i] -= tmp, f[i ^ 1] += tmp, flow += tmp;
		}
	}

	return flow;
}
int dinic() {
	int res = 0, flow;
	while (bfs()) while (flow = find(s, 1e18)) res += flow;
	return res;
}
void dfs(int u, int k) {
	vis[k][u] = 1;
	for (int i = h[u]; ~i; i = ne[i]) {
		int j = e[i];
		if (!vis[k][j] && f[i ^ k])
			dfs(j, k);
	}
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	memset(h, -1, sizeof h);
	cin >> n >> m;

	s = 0, t = n - 1;
	while (m --) {
		int u, v, w;
		cin >> u >> v >> w;
		add(u, v, w);
	}
	dinic();
	dfs(s, 0), dfs(t, 1);

	int res = 0;
	for (int i = 0; i < idx; i += 2)
		if (vis[0][e[i ^ 1]] && vis[1][e[i]])
			res ++;

	cout << res << endl;

	return 0;
}

拆点

POJ3281 Dining

题意:有 \(n\) 头奶牛, \(F\) 个食物和 \(D\) 个饮料,每头奶牛可以吃某些食物和饮料,但都只能吃食物和饮料各一个。求最多能满足多少头奶牛。( 三分图匹配

考虑继续使用类似二分图的建网络流的方式,举个例子:

不过,这样真的能够求出最终的答案吗?答案是否定的。

考虑局部的这样一个位置,最大流得到话会流出 \(2\) 的,也就是这个奶牛会贡献 \(2\) ,而应该是 \(1\)

所以,就要拆点了!

通过,流量守恒,就可以使得通过每一个点的流量最多为 \(1\) ,也就满足了题意。

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 4e2 + 10, M = 1e5 + 10;

int n, m, k, s, t;
int h[N], e[M], ne[M], f[M], idx;
int d[N], cur[N];

void add(int a, int b, int c) {
    e[idx] = b, ne[idx] = h[a], f[idx] = c, h[a] = idx ++;
    e[idx] = a, ne[idx] = h[b], f[idx] = 0, h[b] = idx ++;
}
bool bfs() {
    memset(d, -1, sizeof d);
    queue<int> q;
    q.emplace(s), d[s] = 0, cur[s] = h[s];
    while (q.size()) {
        int u = q.front();
        q.pop();

        for (int i = h[u]; ~i; i = ne[i]) {
            int j = e[i];
            if (d[j] == -1 && f[i]) {
                d[j] = d[u] + 1, cur[j] = h[j];
                if (j == t) return 1;
                q.emplace(j);
            }
        }
    }
    return 0;
}
int find(int u, int lim) {
    if (u == t) return lim;

    int flow = 0;
    for (int i = cur[u]; ~i && flow < lim; i = ne[i]) {
        cur[u] = i;
        int j = e[i];
        if (d[j] == d[u] + 1 && f[i]) {
            int tmp = find(j, min(lim - flow, f[i]));
            if (!tmp) d[j] = -1;
            f[i] -= tmp, f[i ^ 1] += tmp, flow += tmp;
        }
    }
    return flow;
}
int dinic() {
    int res = 0, flow;
    while (bfs()) while (flow = find(s, 1e18)) res += flow;
    return res;
}

signed main() {
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);

    memset(h, -1, sizeof h);
    cin >> n >> m >> k;

    s = 0, t = n * 2 + m + k + 1;
    for (int i = 1; i <= n; i ++) {
        int cf, cd, x;
        cin >> cf >> cd;
        for (int j = 1; j <= cf; j ++)
            cin >> x, add(x, i + m, 1);
        for (int j = 1; j <= cd; j ++)
            cin >> x, add(i + m + n, x + m + n + n, 1);
    }
    for (int i = 1; i <= m; i ++)
        add(s, i, 1);
    for (int i = m + n * 2 + 1; i < t; i ++)
        add(i, t, 1);
    for (int i = m + 1; i <= m + n; i ++)
        add(i, i + n, 1);

    cout << dinic() << endl;

    return 0;
}

习题

P2766 最长不下降子序列问题

参考代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 1e3 + 10, M = 4e5 + 10;

int n, s, t;
int a[N], dp[N];
int h[N], e[M], ne[M], f[M], idx;
int d[N], cur[N];
void add(int a, int b, int c) {
    e[idx] = b, ne[idx] = h[a], f[idx] = c, h[a] = idx ++;
    e[idx] = a, ne[idx] = h[b], f[idx] = 0, h[b] = idx ++;
}
bool bfs() {
    memset(d, -1, sizeof d);
    queue<int> q;
    q.emplace(s), d[s] = 0, cur[s] = h[s];
    while (q.size()) {
        int u = q.front();
        q.pop();

        for (int i = h[u]; ~i; i = ne[i]) {
            int j = e[i];
            if (d[j] == -1 && f[i]) {
                d[j] = d[u] + 1, cur[j] = h[j];
                if (j == t) return 1;
                q.emplace(j);
            }
        }
    }
    return 0;
}
int find(int u, int lim) {
    if (u == t) return lim;

    int flow = 0;
    for (int i = cur[u]; ~i && flow < lim; i = ne[i]) {
        cur[u] = i;
        int j = e[i];
        if (d[j] == d[u] + 1 && f[i]) {
            int tmp = find(j, min(lim - flow, f[i]));
            if (!tmp) d[j] = -1;
            f[i] -= tmp, f[i ^ 1] += tmp, flow += tmp;
        }
    }
    return flow;
}
int dinic() {
    int res = 0, flow;
    while (bfs()) while (flow = find(s, 1e18)) res += flow;
    return res;
}

signed main() {
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);

    memset(h, -1, sizeof h);
    cin >> n;
    for (int i = 1; i <= n; i ++)
        cin >> a[i];
    s = 0, t = 2 * n + 1;

    for (int i = 1; i <= n; i ++) {
        dp[i] = 1, add(i, i + n, 1);
        std::vector<int> opt;
        for (int j = 1; j < i; j ++)
            if (a[j] <= a[i] && dp[j] + 1 > dp[i])
                opt.clear(), opt.emplace_back(j), dp[i] = dp[j] + 1;
            else if (a[j] <= a[i] && dp[j] + 1 == dp[i])
                opt.emplace_back(j);
        for (auto v : opt)
            add(n + v, i, 1);
    }
    int res = 0;
    for (int i = 1; i <= n; i ++)
        res = max(res, dp[i]);
    cout << res << endl;

    for (int i = 1; i <= n; i ++) {
        if (dp[i] == res)
            add(i + n, t, 1);
        if (dp[i] == 1)
            add(s, i, 1);
    }
    res = dinic();
    cout << res << endl;

    for (int i = 0; i < idx; i += 2) {
        if (e[i ^ 1] == 1 && e[i] == 1 + n || e[i ^ 1] == 1 + n && e[i] == t || e[i ^ 1] == s && e[i] == 1)
            f[i] = 1e18;
        else if (e[i ^ 1] == n && e[i] == n + n || e[i ^ 1] == n + n && e[i] == t || e[i ^ 1] == s && e[i] == n)
            f[i] = 1e18;
    }
    res += dinic();
    cout << min(res, n) << endl;

    return 0;
}

POJ3498 March of the Penguins

参考代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 2e2 + 10, M = 2e4 + 10;

int n, s, t;
double ld;
int h[N], e[M], ne[M], f[M], idx;
int d[N], cur[N];
struct Node {
    int x, y;
    int tot, cnt;
    double operator- (const Node &tmp)const {
        int a = x - tmp.x, b = y - tmp.y;
        return sqrt(a * a * 1.0 + b * b * 1.0);
    }
}pg[N];
void add(int a, int b, int c) {
    e[idx] = b, ne[idx] = h[a], f[idx] = c, h[a] = idx ++;
    e[idx] = a, ne[idx] = h[b], f[idx] = 0, h[b] = idx ++;
}
bool bfs() {
    memset(d, -1, sizeof d);
    queue<int> q;
    q.emplace(s), d[s] = 0, cur[s] = h[s];
    while (q.size()) {
        int u = q.front();
        q.pop();

        for (int i = h[u]; ~i; i = ne[i]) {
            int j = e[i];
            if (d[j] == -1 && f[i]) {
                d[j] = d[u] + 1, cur[j] = h[j];
                if (j == t) return 1;
                q.emplace(j);
            }
        }
    }
    return 0;
}
int find(int u, int lim) {
    if (u == t) return lim;

    int flow = 0;
    for (int i = cur[u]; ~i && flow < lim; i = ne[i]) {
        cur[u] = i;
        int j = e[i];
        if (d[j] == d[u] + 1 && f[i]) {
            int tmp = find(j, min(lim - flow, f[i]));
            if (!tmp) d[j] = -1;
            f[i] -= tmp, f[i ^ 1] += tmp, flow += tmp;
        }
    }
    return flow;
}
int dinic() {
    int res = 0, flow;
    while (bfs()) while (flow = find(s, 1e18)) res += flow;
    return res;
}

void solve() {
    cin >> n >> ld;

    int sum = 0;
    for (int i = 1; i <= n; i ++)
        cin >> pg[i].x >> pg[i].y >> pg[i].tot >> pg[i].cnt, sum += pg[i].tot;

    s = 0;
    std::vector<int> res;
    for (t = 1; t <= n; t ++) {
        memset(h, -1, sizeof h);
        idx = 0;
        for (int i = 1; i <= n; i ++) {
            add(s, i, pg[i].tot), add(i, i + n, pg[i].cnt);
            for (int j = 1; j <= n; j ++)
                if (i != j && pg[j] - pg[i] <= ld)
                    add(i + n, j, 1e18);
        }
        if (dinic() == sum)
            res.emplace_back(t);
    }

    if (res.empty())
        cout << -1 << endl;
    else {
        for (auto v : res)
            cout << v - 1 << " ";
        cout << endl;
    }
}

signed main() {
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);

    int dt;

    cin >> dt;

    while (dt --)
        solve();

    return 0;
}

关键词:

相关资讯

  • 《无畏契约》国服返场幻象皮肤评测

    最近,一些玩家对《无畏契约》国服未来将上线哪几款幻象皮肤以及哪个幻象皮肤的使用手感较好等问题颇感兴趣。为了解答这些问题,我们请...
  • 「网络流浅谈」最大流的应用

    二分图匹配 考虑如何将二分图匹配问题,转化为流网络。设置 \(1\) 个汇点和源点,从...
  • 《世界启元》乔瓦娜技能组合攻略

    世界启元乔瓦娜是一名骑兵类辅助角色,她拥有较高的支援属性。在组队时,乔瓦娜可以组成骑兵部队,方便大地图赶路。很多玩家都想知道游...
  • FGO职阶刻痕选择推荐

    在命运冠位指定游戏中,国服即将开启新功能【职阶刻痕】,这是一个可以强化整个职阶的系统。由于材料有限、培养周期长,因此对职阶的选...
  • 《夜族崛起》加战利品buff的仆人去哪抓

    《夜族崛起》中我们需要扮演一只吸血鬼,建造自己的家园,对抗强大的敌人。游戏中可以抓仆人,不同的仆人有不同的效果。玩家想抓加战利...
  • 《NIKKE胜利女神》白雪公主角色介绍

    《NIKKE胜利女神》中的白雪公主是一名朝圣类型的输出英雄。许多玩家对她的信息还不是很清楚,下面将为您详细介绍白雪公主这个角色...